\(\int \frac {a+i a \tan (c+d x)}{(e \sec (c+d x))^{5/2}} \, dx\) [191]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 96 \[ \int \frac {a+i a \tan (c+d x)}{(e \sec (c+d x))^{5/2}} \, dx=-\frac {2 i a}{5 d (e \sec (c+d x))^{5/2}}+\frac {6 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {2 a \sin (c+d x)}{5 d e (e \sec (c+d x))^{3/2}} \]

[Out]

-2/5*I*a/d/(e*sec(d*x+c))^(5/2)+2/5*a*sin(d*x+c)/d/e/(e*sec(d*x+c))^(3/2)+6/5*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/c
os(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/e^2/cos(d*x+c)^(1/2)/(e*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {3567, 3854, 3856, 2719} \[ \int \frac {a+i a \tan (c+d x)}{(e \sec (c+d x))^{5/2}} \, dx=\frac {6 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}-\frac {2 i a}{5 d (e \sec (c+d x))^{5/2}}+\frac {2 a \sin (c+d x)}{5 d e (e \sec (c+d x))^{3/2}} \]

[In]

Int[(a + I*a*Tan[c + d*x])/(e*Sec[c + d*x])^(5/2),x]

[Out]

(((-2*I)/5)*a)/(d*(e*Sec[c + d*x])^(5/2)) + (6*a*EllipticE[(c + d*x)/2, 2])/(5*d*e^2*Sqrt[Cos[c + d*x]]*Sqrt[e
*Sec[c + d*x]]) + (2*a*Sin[c + d*x])/(5*d*e*(e*Sec[c + d*x])^(3/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3567

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*((d*Sec[
e + f*x])^m/(f*m)), x] + Dist[a, Int[(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && (IntegerQ[2
*m] || NeQ[a^2 + b^2, 0])

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 i a}{5 d (e \sec (c+d x))^{5/2}}+a \int \frac {1}{(e \sec (c+d x))^{5/2}} \, dx \\ & = -\frac {2 i a}{5 d (e \sec (c+d x))^{5/2}}+\frac {2 a \sin (c+d x)}{5 d e (e \sec (c+d x))^{3/2}}+\frac {(3 a) \int \frac {1}{\sqrt {e \sec (c+d x)}} \, dx}{5 e^2} \\ & = -\frac {2 i a}{5 d (e \sec (c+d x))^{5/2}}+\frac {2 a \sin (c+d x)}{5 d e (e \sec (c+d x))^{3/2}}+\frac {(3 a) \int \sqrt {\cos (c+d x)} \, dx}{5 e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}} \\ & = -\frac {2 i a}{5 d (e \sec (c+d x))^{5/2}}+\frac {6 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {2 a \sin (c+d x)}{5 d e (e \sec (c+d x))^{3/2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.13 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.03 \[ \int \frac {a+i a \tan (c+d x)}{(e \sec (c+d x))^{5/2}} \, dx=-\frac {a \left (2+2 \cos (2 (c+d x))-2 \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )-3 i \sin (2 (c+d x))\right ) (-i+\tan (c+d x))}{5 d e^2 \sqrt {e \sec (c+d x)}} \]

[In]

Integrate[(a + I*a*Tan[c + d*x])/(e*Sec[c + d*x])^(5/2),x]

[Out]

-1/5*(a*(2 + 2*Cos[2*(c + d*x)] - 2*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(
c + d*x))] - (3*I)*Sin[2*(c + d*x)])*(-I + Tan[c + d*x]))/(d*e^2*Sqrt[e*Sec[c + d*x]])

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 319 vs. \(2 (107 ) = 214\).

Time = 6.19 (sec) , antiderivative size = 320, normalized size of antiderivative = 3.33

method result size
risch \(-\frac {i \left ({\mathrm e}^{2 i \left (d x +c \right )}+7\right ) a \sqrt {2}}{10 d \,e^{2} \sqrt {\frac {e \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}-\frac {3 i \left (-\frac {2 \left (e \,{\mathrm e}^{2 i \left (d x +c \right )}+e \right )}{e \sqrt {{\mathrm e}^{i \left (d x +c \right )} \left (e \,{\mathrm e}^{2 i \left (d x +c \right )}+e \right )}}+\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, \left (-2 i E\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )+i F\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )\right )}{\sqrt {e \,{\mathrm e}^{3 i \left (d x +c \right )}+e \,{\mathrm e}^{i \left (d x +c \right )}}}\right ) a \sqrt {2}\, \sqrt {e \,{\mathrm e}^{i \left (d x +c \right )} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}}{5 d \,e^{2} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) \sqrt {\frac {e \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}\) \(320\)
default \(\frac {2 a \left (-3 i \cos \left (d x +c \right ) F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+3 i \cos \left (d x +c \right ) E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}-6 i F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+6 i E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+\left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )-3 i \sec \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+3 i \sec \left (d x +c \right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+\sin \left (d x +c \right ) \cos \left (d x +c \right )+3 \sin \left (d x +c \right )\right )}{5 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {e \sec \left (d x +c \right )}\, e^{2}}-\frac {2 i a}{5 d \left (e \sec \left (d x +c \right )\right )^{\frac {5}{2}}}\) \(439\)
parts \(\frac {2 a \left (-3 i \cos \left (d x +c \right ) F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+3 i \cos \left (d x +c \right ) E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}-6 i F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+6 i E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+\left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )-3 i \sec \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+3 i \sec \left (d x +c \right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+\sin \left (d x +c \right ) \cos \left (d x +c \right )+3 \sin \left (d x +c \right )\right )}{5 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {e \sec \left (d x +c \right )}\, e^{2}}-\frac {2 i a}{5 d \left (e \sec \left (d x +c \right )\right )^{\frac {5}{2}}}\) \(439\)

[In]

int((a+I*a*tan(d*x+c))/(e*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/10*I*(exp(I*(d*x+c))^2+7)/d*a*2^(1/2)/e^2/(e*exp(I*(d*x+c))/(exp(I*(d*x+c))^2+1))^(1/2)-3/5*I/d*(-2*(e*exp(
I*(d*x+c))^2+e)/e/(exp(I*(d*x+c))*(e*exp(I*(d*x+c))^2+e))^(1/2)+I*(-I*(exp(I*(d*x+c))+I))^(1/2)*2^(1/2)*(I*(ex
p(I*(d*x+c))-I))^(1/2)*(I*exp(I*(d*x+c)))^(1/2)/(e*exp(I*(d*x+c))^3+e*exp(I*(d*x+c)))^(1/2)*(-2*I*EllipticE((-
I*(exp(I*(d*x+c))+I))^(1/2),1/2*2^(1/2))+I*EllipticF((-I*(exp(I*(d*x+c))+I))^(1/2),1/2*2^(1/2))))*a*2^(1/2)/e^
2/(exp(I*(d*x+c))^2+1)/(e*exp(I*(d*x+c))/(exp(I*(d*x+c))^2+1))^(1/2)*(e*exp(I*(d*x+c))*(exp(I*(d*x+c))^2+1))^(
1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.14 \[ \int \frac {a+i a \tan (c+d x)}{(e \sec (c+d x))^{5/2}} \, dx=\frac {{\left (12 i \, \sqrt {2} a \sqrt {e} e^{\left (i \, d x + i \, c\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right ) + \sqrt {2} {\left (-i \, a e^{\left (4 i \, d x + 4 i \, c\right )} + 4 i \, a e^{\left (2 i \, d x + 2 i \, c\right )} + 5 i \, a\right )} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{10 \, d e^{3}} \]

[In]

integrate((a+I*a*tan(d*x+c))/(e*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/10*(12*I*sqrt(2)*a*sqrt(e)*e^(I*d*x + I*c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, e^(I*d*x + I*c)
)) + sqrt(2)*(-I*a*e^(4*I*d*x + 4*I*c) + 4*I*a*e^(2*I*d*x + 2*I*c) + 5*I*a)*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*
e^(1/2*I*d*x + 1/2*I*c))*e^(-I*d*x - I*c)/(d*e^3)

Sympy [F]

\[ \int \frac {a+i a \tan (c+d x)}{(e \sec (c+d x))^{5/2}} \, dx=i a \left (\int \left (- \frac {i}{\left (e \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\right )\, dx + \int \frac {\tan {\left (c + d x \right )}}{\left (e \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx\right ) \]

[In]

integrate((a+I*a*tan(d*x+c))/(e*sec(d*x+c))**(5/2),x)

[Out]

I*a*(Integral(-I/(e*sec(c + d*x))**(5/2), x) + Integral(tan(c + d*x)/(e*sec(c + d*x))**(5/2), x))

Maxima [F]

\[ \int \frac {a+i a \tan (c+d x)}{(e \sec (c+d x))^{5/2}} \, dx=\int { \frac {i \, a \tan \left (d x + c\right ) + a}{\left (e \sec \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+I*a*tan(d*x+c))/(e*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((I*a*tan(d*x + c) + a)/(e*sec(d*x + c))^(5/2), x)

Giac [F]

\[ \int \frac {a+i a \tan (c+d x)}{(e \sec (c+d x))^{5/2}} \, dx=\int { \frac {i \, a \tan \left (d x + c\right ) + a}{\left (e \sec \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+I*a*tan(d*x+c))/(e*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)/(e*sec(d*x + c))^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a+i a \tan (c+d x)}{(e \sec (c+d x))^{5/2}} \, dx=\int \frac {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}{{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int((a + a*tan(c + d*x)*1i)/(e/cos(c + d*x))^(5/2),x)

[Out]

int((a + a*tan(c + d*x)*1i)/(e/cos(c + d*x))^(5/2), x)